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the dual control is shown to be intermediate (opt imal to linear terms)

between the CE and the opt imal control. It is also understandable why

the uncertainty threshold principle cannot be captured by the dual control,

because it is an effect which is essentially nonlinear (quadratic and higher

order terms) in the covariances. The accuracy of the dual control law for

~~all parameter covariances is quite surprising, as no learning can take

place in this problem, due to the white-noise parameter assumption . In other

words , if the system parameters have mnall standard deviations about their

mean values, we demonstrate by means of a scaler example that the dual. con-

trot is - (to first order linear terms in the parameter standard deviations)

identical. to the white-parameter optimal control law, which involves no

learning. One can argue both weys whether this is “good news or bad news” .

The “good news” is that if the system parameters are not very random, then

the inherent “robustness” properties of feedback, modulated correctly for

parameter uncertainty, require no detailed “learning” of the parameters,

provided that certain “caution” is exercised (this is not what the certainty—

equivalence principle states) . The “bad news” is that the dual cofl trol

algorithm ~~ea not seem to capture the required “caution” effects when the

system permeters are v~~y uncertain and very weakly correlated in time.

By the above comments we do not mean to imply any critici~~t of the

dual adaptive control algorithm. It represents an excellent contribution

to the state of the art in the field of stochastic adaptive control, and

(again loosely speaking) it represents an intermediate approach to the

control of systems with random parameters, somewhere between the case of

perfect parameter knowledge assumptions (the certainty-equivalence case)

and the (unrealistic) case that no learning of the system parameters is

possible (the white multiplicative parameter case). What the authors 
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attempt to do in this paper , by means of the simplest possible scalar

example, is to understand some of the theoretical properties of the dual

control algorithm. Thus, the reader should expect only a relatively minor

theoretical contribution; by no means we imply any superiority of any

stochastic adaptive control scheme that is useful for practical designs.

The entire field of adaptive control has not yet matured to the point that

can provide the engineering designer with useful instructions on how to

realize an adaptive control system.

Another contribution of this paper is to examine the structure of

the stochastic cost to go. In the dual control method the cost is split

into three parts, the deterministic cost, the caution cost , and the

probing cost. One would suspect that the probing part of the cost would

correspond to the active learning of the unknown parameters, and that it

would be zero in this example with multiplicat ive white parameters. How-

ever, the spl itting of the dual cost between a caution and a probing term

f ail s to have an appealing meaning . Both terms combine to yield a sum

of positive weightings of the one-step predictions of the state covariances.

Thus, no distinction can be made between uncertainties that can or cannot

be influenced by the control.

In Section 2, the control problem is introduced . Section 3 presents

its optimal solution on a finite horizon and discusses its existence on

an inf inite horizon, which is governed by the uncertainty threshold

principle. In Section 4, the dual. adaptive control algorithm is applied

to the problem of concern. A closed form expression for the dual cost

is derived and it is proved that it remains finite on an infinite horizon,

L 
- :T ~~~~~~~~~~

—
~~ ~~~ -- IT~~-~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --- -~~~~~~~~ .— -‘-~~~~~-.-‘— - - -~~~ - --~~~~~~~~~~~
-_ - ~~~~~~ ~~~~



~~~~~~~~
- - , ‘

~~~~~~~~~~~~~~

h. —10—

trajectory is described by

z(j) ~~(j)  +~~ z (j )  ; (j > k + 1)

Perturbat ion controls c5u ( j )  are exercised so as to minimize the expected

increment in the cost, AJ (~~l). In order to solve that min~.mization

problem, the state perturbation tSz(j + 1) is expanded to second-order

terms in ~Sz(j) and ~Su ( j ) ,  using the dynamical equt ion about the nominal

trajectory ~,(i )  and control u (j). The cost function is also expanded

to second order about the nominal trajectory.

This permits the evaluation of AJ *(k  + 1), the minimum of ~J (Ic + 1).
0 0

The wide—sense dual adaptive control a time Ic, U
d 
(Ic), is then obtained

by minimiz ing over the input u( Jc ) the dual cost Jd
(u (k ) ]

~ 
namely the sum

of the one—step cost at stage k and the approximation of the cost-to-go

from stage (IC + 1) on:

~ E~ Qx2 (k) + Ru 2 (k) + j(k + 1) + ~J*(k + l)IYk
} (4.1)

where denotes the information available at stage k. In the present

problem, can be described by the sequences x(i) (i0 ,l,...,k-l) and

u(i) (i=0,l,..., k—l).

In the problem introduced in section 2 , the enlarged state is de-

fined by

z
Toc) = (x(k) , a(k) , b(k)] (4.2)

Step 1 of the dual adaptive algorithm sets the initial state at

time (Ic + 1) to the estimated value, given the information

x0
(k + 1) = ~ (k + ltk) = ~~~(k) + ~u (k) (4.3)

L - IT±T~: Ili_~. ~~~~~~~~~~~~~
• 
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The deterministic version of the dynamical equation (2.1) is

x(j + 1) = ax0 (j )  + bu0
( j )  (j = k + 1,. .., N —l )  (4 .4)

The nominal control sequence is the opt imal control sequence of the

associated deterministic problem from time (Ic + 1) on:

K ( j  + L ) a  b
u Ci )  = —G (j)x (j )  = — — x (j) (4.5)o 0 ~ R + K ( j + l ) b  0

0

and K (j )  is given recursively by the Riccati difference equation:

— 
+ l)a 2 b 2

K (j)  = Q + ~~ Cj  + 1)a
2 

- —
~~~ — - ( 4 . 6 )o o R + ~~0

(j + 1)b 2

K (N) = 0
0

Equation (4.6) is in fact the special version of Eq. (3.3) corresponding

to E = E b = E
bb 

= 0. The initial estimateof the cost-to-go is given

by: (4 7)

30 (k + 1) (l/2)K0 (k + l)x 2 (k + 1) = (l/2 )K (k + l ) [~ k (k )  + ~u (k ) 1
2

In step 2 of the dual adaptive algorithm, the covariances of the enlarged

state appear , in the calculation of the cost perturbation (k + 1).

The updated covariance matrix of the perturbation Sz (j )  of the enlarged

state z ( j )  given the current information , along the nominal trajectory,

is:
0 0 0

= 
( 4.8)

This results from the fact that the state x ( k )  is exactly observed and

from the white noise assumption on a (Ic) and b (k ) . The one—step pre—

dicted covariance of the perturbation of the enlarged state, along the

nominal trajectory, is

--- -~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~ •~~— - - - - - --
~~~~~~ ~~~

-
~~~~

--- 
~~~~~~
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E° (j+l~j) 0 0

E (j  + lij) — 0 E~~ E b (4.9 )

. 0 E~~ Ebb

where

+ Zaa~
C
oW 

+ 2E
ab
x (j)u ( j )  + E~~u

2
(~ ) (4.10)

and x (j), u Ci) denote the nominal trajectory and control , as obtained

in step 1.

Equation (4.9) also results from the white—noise assumption and the

perfect observation of the state. From the expression for the dual cost

as given in Tse et a].. ( ( 3 ] ,  Eq. (3—1 2)) it follows that

= (]./2)Ru 2Ck) + (l/2)K
0
Ck+1)~~(Ic+l J Ic)

2 
+ p (k+1)~~(k+l)

+ (l/2)tr 
- ~ ~!.

(i)
~~(iIi) 

+ [E(Ic+l~k) 
— 
~~(k+llk+1)1K (Ic+1)

+ .- t (j+1~~~j +1) ]K (j+ 1)~~~ 
(4.11)

In Eq. (4.11) , K Cj )  is a matrix which has the dimension of the enlarged

state. Denot ing the random parameters by the vector

B (k) ( a(k) , b(k) ] , (4.12)

the matrix K (j) can be partitioned as

K
X8
()]

I ex ee I (4.13)
(I ) ~o (I]

1- 

_ _  

_ _ _ _ _ _  
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It turns out [3] that

K~~(j) K (j) (4.14)

where K (j) is the solution of the Riccati difference equation (4.6).

The matrices K’~~( j )  and ~~~(j )  can be obtained from recursions [3] once

the sequence K~~~(j )  is known . The vector ~ ,Ck+ 1) is zero in our example

because we deal with a regulator , not a tracking problem. Also, E(k÷lIk) ,

the one—step predicted covariance of the enlarged state at stage k, is

H given by (4.9) with j =k , since

x (Ic+lJIc) ~~ x (k) + ~u(k) (4.15)

In eq. (4.11), the matrix W ( j )  has the following structure (see [31 ,

Eq. (3. 17)) :

fQ 
V
1 V2

w C j )  = J v 1 0 0 (4.16)

0 0

The exact definition of V1, V2 is unimportant in this example, - be—

cause
(4. 17)

([Q Vi V2] fo 0

• t r (w ( j )~ C j j j ) ]  = t rf lv1 0 o J J o  Z~~ Eab J~ 
0

~j~~2 0 oJ [~ E b E
bb] )

On the other hand ,

E~~~Cj + 1 jj )  K~~~(j+l) 0 0

tr~K ( j +1) [Z ( ~ +1~~ ) — E (i~ i)]
’
~ç

= tr [ : :
= E

0 ( j + ] . lj )K XX (j +  I.) = E° (j+1!j)K (j+l) (4.18)

I 
- - -.- - --- - — . 
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From Eqs. (4.11), (4.14), (4.15), (4.17), (4.18), and the remarks just

made , it follows that the dual cost is given as follows in our problem.

Jd
[
~~

k)l (1/2)Ru2(k) + (l/2)(~x(k) + ~ u(k)]
2
~~ Ck+l)

N—i 
(4.19)

+ (l/2)K (k+l)E~~ (k+ 1~k) + (1/2) 
- 

L K (j+].)E° (j+i~j)
- - j =k+l

4.2 Infinite—Horizon Case

It will now be shown that , under the same assumptions which guarantee

the finiteness of the certainty-equivalent cost over an infinite hor izon ,

the dual cost too remains bounded . Therefore , there is a qualitative dif-

ference between the dual adaptive control and the optimal control in the

infinite--horizon case: the former does not obey the uncertainty threshold

principle , which governs the latter.

Controllability of the deterministic dynamical system (4.4 ) is

equivalent to the property that b ~ 0. Under the assumptions (3.6)

• (b ~ 0, Q > 0, R > 0) ,  it is well known [81 that the solution K0 ( j )  of

Riccati recursion (4.6) reaches a finite positive limit K as N +

Hence, if u (j ) ,  x (j )  are respectively successive controls and states

of the certainty-equivalent strategy,

N—i 2 2Urn E [Qx2 (j )  + Ru0 (j ) ]  = (l/2)i~ x (k+l) < + (4.20)
N4~° j—k+1

According to Eq. (4.19), we must prove that

N—i
Z ~~~(j+i)Z ° (j+l~ j )  remains bounded as N + 

~~~. From Eqs . (4.5 ) and

(4.10) ,

~_i j
~:i~. ~~~; r~I± ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _
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(4.21)

~~~+1
Ko Ci+1 E

~~~
i+11i) = 

j :k+1 ° 
[E aa

_2 EabGo
(
~~

) + E
bb

G2 (i) x~~
C i )

In fact , both K( j + 1) and G (j )  depend on N: let us emphasize that

dependence by the notation K (j +l; N ) ,  G (j ;N )  . Clearly,

~~~(j + l; N) < K
0
Cj; N) (4.22)

since the left—hand side defines the min imal cost on a shorter horizon .

From Eq. (4.5),

3G
0

( j)  a b R

~K0(j+i) [R+K (j+l)b
2 ~2

Accordingly

- 

- aG2 (j ) ~G (j) R(ab)2 K (j+l)

— 
= 2 G (j) 

— 
= 

— _ 2 3 > 0
aK0

(i+l) ° 3IC Cj +l) (R + K
0
Cj+l)b ] —

whence it follows that , also,

G~ (j+1;N) < G ~ (j ;N)

or

1G0(l+1;N) I < ~G (j ;N ) l (4 . 2 3 )

From (4.22) and (4.23),

K (j+l;N) 
~.
Ko

and

IG (i+l;N) I ~~. I~3~j )  

*-•—- . _ _  
_ _ _ _  

— -
•
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where G is obtained from K by the same function which yields G0(i)

from K (j). (Eq. (4.5)). On the other hand , E, as a covariance matrix,

is syimnetric and positive semi-definite. Therefore,

(Eaa
_2E

ab
G
o
(l) + Z

bb
G
~

(l ) ]  < a(G~~(j )  + 1] (4 .24)

where ~ is the largest eigenvalue of E. As a result,

N~~~ l 

~~~~~~~C j+l )  E
~~~~~~~ ( j+ 1I j )  < K

0c7(G~ + 1] 
N~ l 

x~~( j )  ( 4.25)
j—k+l j=k+l

However,

IN-i 
2 1

Q lim E x (j )I  < him E (Qx2 (j )  + Ru2 ( j )]  1/2 K x2 Ck+l) < +
N4~~° [?=k+l ] N~~ j k+1 °

Since Q > 0, it follows that

N-l 2him E x (j) < +

N-~° j=k+1

and therefore, the left—hand side of (4.25) remains finite as N + 
~~~ .

A consequence of this observation is that there will be an important

discrepancy between the trajectory resulting from the application of

the dual control, and the optima]. traj ectory , for the range of covariances

which do not obey the inequality (3.5) of the uncertainty threshold

principle. This qualitative difference is confirmed by a quantitative

comparison in the next section .

5. Comparison between optimal and dual control in the infinite—horizon
Case

From the expression (4.19) for the dual cost and the knowledge that

it remains botnded on an infinite horizon (section 4.2), it is possible

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_
~~~~i_ 
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to obtain a closed-form expression for the limit of the dual cost when

N goes to infinity, in terms of the various problem data and the limit

of the solution to the Riccati recursion (4.6). This in turn provides

a closed—form expression for the dual adaptive control, which can there-

fore be compared with the optimal control as given by Eqs. (3.1), (3 .2 ) ,

(3.3). Let

a(j;N) ~ ~~ (j+l;N) E° (j+1~j) (5.1)

We are interested in evaluating

N
L him E a(j , N) ( 5 .2)

N~~° j—k+l

To that end, we use Eq. (4.22), and the stability of the closed-loop

dynamical system of the certainty-equivalent strategy. Namely,

x (j+l) ~0
(j)x (j) (5.3)

where

~~~(j )  
~~~~~

_ b G  (j )  — 
—2R + K

0
(j+l)b

it is known [8] that, under the assumptions (3.6), the asymptotic closed—

loop system is strictly stable:

• 
1 1R

1~~I 
— limI~0(j)l — — 2  

< ~~ (5.5)
RI~K

0
b

From eqs . (4.2 1) and (5.3),

1—1
a (j , N) a K (j+1) (E —2Z G (j) + E G2(j)] fl A

2
(i)x2(k+1) (5.6)o aa a o b b o

_ _ _  

-
~~~~~~~

- 
- -

— — ---~.———I---- - — —- -.- —. )I~l;-1~~~
’ .- ~~~ :

~~~~~ Ik~~ —— - -  - -  - 
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where, in fact , K (~+l) K (j + 1;N) , G ( j )  G ( ~ ; N ) ,  A ( i) — t~~( i ;N ) .

However,

N I m  N 1
L — him E a( j , N) — him E a(j,N) + E a (j,N)f

N-’~~~ m lc+i ~: Li-~~~ 
j an~I-]. J

for any in C £k+l,. . . ,N—1}. Therefore, also,

u r n  N 1
L him him E a(j ,N) + E a(j,N)I

N- ~= Li~~~l j —m+l J

But, it has been shown in section 4.2 that

N
him E a(j,N) < + °~ for all k
N~~- j —k

Accordingly,

r N 1
Urn ~1im E a(j,N)I — 0
~~~ ;— L~~ 

j ”m+l J
and

m r i n  1
L — Urn lim E a(j,N) = u r n  I £ him a( j ,N) ( 5.7)

m~0 N4~ jak+1 ~~~~~ Li”k~1 N~~~~~~ J

From (5.6) , using the convergence of K(j+l;N), G(j;N) and D (j;N), it is

concluded that a(j,N) goes to a limit as N-’~ , and

him a (j,N) — ~ — 2 E G + Z G2]~~
2
~

1
~~~~~~x

2 (k+l) (5.8)
o aa a b o  b b o

where

K a b
0

~~~ R + K
0

b
2

Accordingly,

±~~~
ii: i-;

~
i:i -:i_ T
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L - i IE - 2 Z G + E G2 ) x2 (k + 1) him ~~ ~2(j-l-k)
0 aa ab o bb o 0 m-~~ j—k+l

1-A2 ~~aa 2 E bG + Zbb
G
~~
]x
~ (k*l) 

(5.9)

where the second equality results from I A I  < 1.

In stmm~ary, taking into account Eqs. (4.3), (4.19), and (5.9) , the

asymptotic value of the dual. cost is arrived at:

~~~~ 
= ( h/ 2 )R ~?( k)  + ( l/2 )K [a x (k )  + bu(k)]2

+ (h/2 )Ko [E
~ aX2 Ck) + 2E

b
x(k)u(k) + Ebb

u(k)] (5.10)

go 2 - - 2
+ (1/2) [E — 2G Z + G Z ] [ax (k ) + b u Ck ) ]

I-A
2 aa o a b  o b b

The minimization of the asymptotic dual cost (5.10) with respect to

u (k) yields the stationary dual adaptive control Law, Ud ix (k) 3 .

I
~
E
ab 

+ ~~ + 
~~~~~~~ 

(Eaa
_ 2G

o
Eab 

+ G2E
bb
)]a

~ 
(5.11)

ud Ix (k) ] a - _ _ _ _ _ _ _ _- x (k)

+ 

1-A
2 

(E
~~

_2G
o
Eab + G~ E

bb)] 
+

Comparison of Eq. (5.11) with the asymptotic version of the optimal con-

trol law (3.2) evidences a similar structure. However, the limit of

K (j+l) as N4~ which occurs in (3.2) — if it exists - is the positive
solution of Eq. (3.7) - if it exists; that is, K(E). Recall that that

limit exists if and only if E lies within a region defined by Eq. (3.5) .

In contrast , the parameter 
~~ 

which occurs in (5.11) is always defined,

finite and pocitive, and

K ~~(Z) I (5.12)
0

• - 
•~~~~~~~~~~~~~ - 
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From Eq. (3.7), the gradient of K ( E )  with respect to E , evaluated at E=O ,

can be found (see append ix) , and the resulting first-order expression of

K(E) about S=0 is accord ingly found :

a KT
K )  = + 

~y— ~~~~~ 
o( Z) (5.13)

and

~~T 

~~~~~~~~~ 

aa
2G
o
Z
ab 

+ G2E
bb
) (5.14)

Hence, the expression between brackets in (5.11) is recognized as the

first-order expansion of K (Z)  in Z about Z =  0. Note that , from (5.14) ,,

a T
(K + 

~~
-
~~~

— (Z) I E] is posit ive , regardless of the value of the covariance

matrix I. This follows from (5.14), the f act that K > 0, 1—A 2 
> 0 and

the positive semidefiniteness of Z . The stationary optimal control law

(from Eqs. (3.1) , (3.2)) exists in the neighborhood of E=O (becauoe E 0  satisfied

Eq. (3.5) and by continuity) and can also be expanded to first order in

Z: 

U
OPT CE) = u

0~~ 
(0) + 

(9
~~PT 

10 

+ 
9:
OPT ~K 

T 
Z + o(Z) (5.15)

where both the direct dependence of ~~~~ on E and the indirect dependence

through K(E) have been taken into account. It follows from (5.15) and

(5.13), (5.14) that

- 

- ) - u~~~ (Z)  = o (Z)

or

I~1a (Z) - u  (
~) I -

11111 = 0 (5.16)
I —I

j—.______ 
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where [ ~j  I is the euclidean norm , for instance. (See the appendix for

a proof) .

On the other hand , the approximation is no better than the first

order. Indeed (see appendix), the second derivatives of u
0~~ 

with respect

to Z involve the second derivatives of K(E), evaluated at E—Q, which are

not present in the dual u~. Therefore, the stationary dual control (on

an infinite t ime-horizon) is the first-order approximation of the optimal

control, as a function of the covariance matrix Z , about the numerical

val~j.e LaO which corresponds to a deterministic problem. It has already

been pointed out ( section 3.1) that the certainty-equivalent control is

a zeroth-order approximation, in the sense that

U~~~ (~~~) 
a ‘2OPT ~~~~~ EaO

This is apparent from Eq. (4.5). Thus, the result of this section shows

that , in our particular problem and for an infinite horizon, the dual

control performs better than the CE control, but less well than the
- 

opt imal one. The accuracy of the dual control can be quite high for ~~all

covarianceg, which is somewhat surprising in view of the fact that the

paraneter cannot be learned , due to the white -noise property.

When the parameter covariances grow large, however, the discrepancy

between the dual. and the optimal control can become substantial . Thi s is

conf irmed for instance by the considerat ion of limiting cases. Assume,

for instance, that a and b are uncorrelated, with the variance of a

• being fixed. For E
bb~~? K ( E ) goes to:

iqt
aa —2

1 — a  Z

_ _  _

r — 
—
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r - as is apparent from Eq. (3.7). The inequality (3.5) to be satisfied by

the covariances is

E

The optimal control law (3.2) goes to zero when Ebb 
goes to Ln.finity.

This is an example of caution effect: the control is inhibited by un-

certainties that it cannot affect. In constrast, the dual control law

u
d
(k) goes to a finite limit

——a bh im UA (k) — 
, x (k)

‘1 Z ~ —2 (1—A )
bb b +  2

G
0

Hence, one can say in that case that the dual law is not cautious enough.

The f it can , however, somet imes be better , even at large values of the

covariances. For instance, in another limiting case where a and b are

still uncorrelated, but E~~, remains fixed and E 9 ~ , both laws have the

• same limit:

him U (k) u r n  ud (k) 
a - L.x(k) .

-
~~~~ 

OPT baa

6. Decomposition of the Dual Cost

A decomposition of the dual cost for the general discrete stochastic

control problem with quadratic cost , 1 near dynamical equations and

linear evolution equation for the random parameters has been proposed

in the literature (5 1. This decomposition split s the dual cost into a

deterministic term, a “caution” term and a “probing” term. The de—

• 

~~~~~~~~~~~~~~~~ 

.

~~~~~~~~~~~
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terministic term (k) represents the value of the cost-to-go corresponding

— to the certainty-equivalent strategy, namely, it depends on the unknown

coefficients only through their current estimated expectations.

The caution term (k) is supposed to reflect those uncertainties

that the control at stage k cannot affect directly, although it can

affect their weightings. Those include the one-step predicted covariance

of the enlarged state at stage k , and the covariance of the noise of

the enlarged state.

The probing term J (k) contains those uncertainties which the control

at stage k can influence; those include the future updated covariances.

In our problem however, the updated covariance matrices of future states

are all equal. to the a priori covariance matrix of the paramters a, b,

because of the white-noise property , so that they cannot be influenced

by the control . The various components of the dual cost are as follows

( 5], [6] :

- I JD~~
c) a (h/2)R u 2 (k) + (1/2)(~~c(k) + bu (k) ] 2K ( k+l) (6.1)

= (l/2)~~0(k+l) E~~~h Ik 
+ (l/2) Z tr (K

~~ 1
E
~~~r) 

(6.2)
jak

and J (k) is given (5] as a function of and K~~1, for j  a k+l,...,N-l.

The dual cost is the sum of the three terms:

+ J (k) + 3 (k) . (6.3)

Using the recursions (3] satisfied by K!~1, and Eq. (4.10) for E~~~(j+hIj),

it is possible to verify that (6.3) is consistent with (4.19). However,

the caution and probing terms combine, in our example, to yield:

_ _ _   
_ _ _ _

_ _ _ _ _ _ _ _ _ _  _ _ _  
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N-i 
(6.4)

J (k) + 3 (k) = ( l/ 2 )K (k+ l)E  (k + l j k )  + (1/2 ) ~ K (j + l) ~~~
0 

( j+ l~~ j )C p 0 XX 0 XXj=k+l

In view of Eq. (4.10), it is clear that the control u(k) can affect both

Z (k+ljk) and ~
° (j+l~j), for j > k+l, but it cannot affect the

coefficients K (i) (i=k+l,...,N). Hence, the decomposition into (6.1)

and (6.2) does not seem to have any intuitive appeal in the present

situation.

Perhaps, another splitting of the cost ~~uld be more appropriate,

where the nondeterministic part of the cost, 3
d~~~

3
D

’ ~~uld be expressed

as the sum of one term which corresponds to the open-loop feedback

strategy [7], and the difference.

In conclusion , it seems that , even though the dual algorithm is

— very near optiinality for small covariances (Section 5) ,  its action cannot

be explained by the decomposition between probing and caut ion in the

present scalar example.

7. Conclusion and Suggestions for Future Work

The mot ivat ion for this analysis has been the desire to gain more

insight into the behavior of the wise-sense dual control algorithm [11,

(2], whose available results so far arise from simulations. Those

results are, of necessity, qualitative rather than quantitative because

a comparison of the adaptive control with the optimal control is usually

impossible since the latter is unknown . An attempt towards the quanti-

zation of some desirable adaptive features possessed by the dual co!ltrol

probing and caution - was made recently [5] , by splitt ing the dual cost

into component terms which each are claimed to account for a particular

effect.

p ..— —
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The approach that we have taken here has been to concentrate on a

special discrete stochastic control problem (quadratic cost, linear

dynamics, multiplicative guassian white noise with perfectly observed

state) where the optimal control is known . The special nature of the

problem makes it possible to evaluate the dual control, too , in closed

analytical form, at least for the inf inite—hro izon case . This permits

a thorough comparison with the opt imal control , which reveal s (1) that

the dual control does not share a fundamental property of the optimal

control, the uncertainty threshold principle; (2) that the dual control

approximates the optimal control linearly in the covariances of the

random parameters, for mnall values of the parameter covariances.

Since no learning can occur (because the parameters are white—noise) ,

one would expect the probing term in the dual cost to vanish. This is,

however, not the case. Instead , probing term and caution term combine

to yield a positively weighted sum of the one-step predicted covariances

of the future states. This observation makes one doubt the usefulness

of the splitting between caution and probing terms in general , as w~’ -

as their intuitive meaning.

Also, alternative decompositions of the dual cost should be in-

vestigated. Ideally, one term should correspond to the certainty-

equivalent control law (this is accomplished by the deterministic term);

another term, to the open—loop feedback law, and the remaining term would

account for the learning characteristics of the algorithm.
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9. Appendix

We shall establish equations (5.14) and (5.16).

1. Proof of Equation (5.14)

Equation (3.7) can be described abstractly as

F (K ,E) = 0 (A.l )

Hence , if K(E) denotes the positive solution, the following is an identity

i n E :

F[K(E),E] a o (A.2)

Upon differentiating (A.2) with respect to Z about ~ a o~ one obtains:

(~f) 
T 

+ 

(
a!. ) (

~
)‘
~ 

a (A.3) H

r ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ - • - . - 
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whence

(~ F \ T

(A.4)- 
-

The numerator and the denominator in (A.4) are now calculated . From
( 3 . 7 ) ,

2 — — 2K(E , + ab )F (K ,~~) a Q + K( Z + a 2) - — 

—2  
-

-J R + K ( Z
bb + b

Denominator of (A.4 )~

—2 K (E
ab + ab )

2
[2R + 2 X (Z

ab + ~~2 ) IC (Z
bb + ~~2 ) ]

~— (K, ) a Z  + a  - 1 - — —— aa

Therefore ,

- 
K~~~

2
~~

2(K ~~~~ 2R) ~~2 - 1 - [(R + ~~~ ~
2~2 - R2]\ 3 K / o 

(R+K ~~
2 )2 ( R + x ~~~

2 ) 2

2 2a R  2 (A.6)
-
~~ 

~~~~~~~~~ 
—~~~~ - 1

( R + K ~~~ ) 
-

where the last equal~ty results from (5.4), (5.5).

Numerator of (A.4) 
-

~ 

+ 

(~~~
) ~ 

Eab +

—

aa

/ 
- 
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hence

(aP
) 

~ (A.8)

— 

K3 (E b +

-

‘ ~~bb. IR + K (Zbb +

(
~

) ~~-2 
)

2 
( A.9 )

= 
-2 K

2
(E
ab 

+

~
Eab R +K (L~,

+ b 2
)

j~J’ \ = 
-2 (A.lO)

\~~abf° R + K b 2

Accordingly,

2 I C a b E  2— 2 —2
T E = [~ 

- 
ab + 

K a b z (A.ll)

~~ (R + K b
2
) ( R + K b

2 )
2 bb

K (E - 2GZaa ab bb

where Eq. (4.5) has been used . Thus , (5.14) results from (A .4) and

• (A.6) , (A.ll) .

2. Proof of Equation (5.16)

: The optimal control gain (3.1), (3.2) is a rational fraction in

K (t ) , more specifically a function of the type

A + BK (Z) + (c
T
t)K(E)

u CE) — 
— x (A .12)

OPT — 

A
1 

+ 31K( Z ) + (c~Z
) X()

hi-
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On the other hand , the dual law is expressed by ( 5 .L )  as

A + B(K(O) + x 1 (0)T~] +

U Q) — 
T T 

— Z (A.l3)
d 

A
1 

+ B
1

(K ( O )  + X ’ ( O )  ~] + c
1
ZK(O)

where 

(0)

with the same coeff icients A, B, c , A1, B1, c1 as in (A.l2). Comparison

of (A.l2) and (A.l3) shows that, in (A.13) , both the numerator and

the denominator of (A.l2) have been replaced by their first expansion

in E about 0. It follows that (A.l2) and (A.13) have the same first-

order expansion in E about E 0.

tn effect,

A + B K ( O )u (0 ) = u ( O ) = x
OPT d A1 + B

1
K(O)

and

= 
j3u~~ 

— 

[A
1 

+ B1K C o 3 E ~~ ’ o  + K(O)c
T]

‘ ~~~~
. / 

0 \~E Jo [A
1 

+ B
1
K(0))2

— 

[A + BK(0))[B
1
X’(O) + K(O)c]~~ 

~
(A
1 

+ B1X (O ) ] 2
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